<dd id="osdth"></dd>
  • <button id="osdth"><object id="osdth"></object></button>
  • <em id="osdth"><acronym id="osdth"><u id="osdth"></u></acronym></em>

    <tbody id="osdth"><noscript id="osdth"></noscript></tbody>
    <button id="osdth"><object id="osdth"></object></button>

    王海燕教授学术报告会

    发布时间:2019-05-12作者:访问量:10

    报告题目Combining network theory and partial differential equation to improve influenza prediction

    报 告 人王海燕 教授

    报告地点:磬苑校区数学楼H306报告厅

    报告时间515日(周三)上午: 10:30-11:30

    报告摘要The ever-increasing availability of geospatial data now opens the possibility to use spatio-temporal models to more accurately predict patterns of movement and trends in human activities, epidemic spread, environmental changes and many other natural phenomena.  In this talk, we present an integrated framework for early detection of epidemic outbreaks based on real-time geo-tagged data in Twitter.  We combine network theory, data mining and partial differential equation models to describe/predict patterns of epidemic spread at a regional level. In addition, I will discuss a number of mathematical problems including free boundary value problems and bifurcation problems arising from these applications.

    欢迎各位老师、同学届时前往!

      

     科学技术处

    2019513

     


    返回原图
    /

    缅甸果敢腾龙娱乐